Outline

1. Framework
2. Approach
3. Applications
4. Conclusion
it is a fact that

- physical models (noise, temperature ...) need more and more integration of building structures specially when dealing with cities
- it is very difficult to provide deterministic modelization of building structures

→ there is a need for stochastic modelizations of such structures
"... but hardly any work exists on the properties of spatial distributions within individual cities,... "

in

"Scaling and allometry in the building geometries of Greater London" - 2008

by

Michael Batty, Rui Carvalho, Andy Hudson-Smith, Richard Milton, Duncan Smith and Philip Steadman
Use of statistics

- a possible way would be to provide stochastic models from expert knowledge
- an other way is to use general stochastic (spatial or spatio-temporal) models statistically adjusted
- indeed statistics appear to be more and more used in interaction with GIS
 → it can be suited for the analysis of urban data (classification, clustering, ...)
 but there is a lack of operational interaction (platforms)
Aim of our work

- provide a stochastic spatial modelization of urban structures enabling statistical manipulation like
 - parameter estimation (characterization)
 - clustering
 - simulation (inclusion in other models)
Through point (or set) marked processes

→ modelization of marks = multivariate features

→ modelization of spatial interaction (between points=buildings) = spatial process
First step: modelization of features

- from a statistical point of view for efficiency
 - to avoid redundancy
 - to achieve completeness
 - experts indicators
- which are generally functional transformations of very few initial data (2 or 3 variables)
 - high multilinear correlations
1.1 Step: modelization of size variables

- as suggested by Batty & al
- e.g. area see graphic beside

GIS buildings layer
- high skewness
 - already noted by Batty & al

- generally log corrected
 - should be done as default when any statistical calculation is done (even a mean)

- suggests that expert indicators cannot be used because made on the initial variables

Figure: Log transformation
Different distributions for cities

Histograms of log-transformed data
Noticing (following)

- multi modality
 - not mentioned by Batty & Al

- 2 to 7 sub populations
 - not ignorable
 - to less or to much

- not gaussian

- not balanced (varying proportions)

- interesting?

→ for structuration and clustering
Propositions

Different laws suggested in literature

- non gaussian components
 - as noted by Batty et al. (distribution for allometry)
 - log Laplace
 - log hyperbolic
All laws have an exponential form,

- **Log hyperbolic**
 - Bagnold and Barndorff-Nielsen (Bagnold & al, 1980)
 - to model the particle-size distribution of naturally occurring sediments.

\[
\frac{1}{2\delta \sqrt{1 + \pi^2 K_1(\zeta)}} \exp -\zeta \sqrt{1 + \pi^2} \sqrt{1 + (\frac{x - \mu}{\delta})^2 - \pi(\frac{x - \mu}{\delta})}
\]

where $K_1()$ is the modified Bessel function of the third kind and order 1.

- **Log skew Laplace model**
 - proposed by Fieller & al
 - simpler alternative to the log-hyperbolic distribution. Its density (on a logarithmic scale) is:

\[
f(x) = \begin{cases}
\frac{1}{\alpha + \beta} \exp \left(\frac{\mu - x}{\alpha} \right), & x \leq \mu \\
\frac{1}{\alpha + \beta} \exp \left(\frac{x - \mu}{\beta} \right), & x > \mu
\end{cases}
\]

with α and β the left and right slopes, in the symmetric case $\alpha = \beta$.

Arlette Antoni - Thierry Dhorne (Lab-STICC)
On the right part of distribution Area > 110m2, for one sub population
Simple clustering on area Building

We suggest 5 clusters

<table>
<thead>
<tr>
<th>Classes on log(Area)</th>
<th>mean(area)</th>
<th>counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1.8</td>
<td>3.28</td>
<td>346</td>
</tr>
<tr>
<td>1.8 ≤ log(AreaV) < 2.6</td>
<td>9.91</td>
<td>471</td>
</tr>
<tr>
<td>2.6 ≤ log(AreaV) < 3.6</td>
<td>23.33</td>
<td>1631</td>
</tr>
<tr>
<td>3.6 ≤ log(AreaV) < 5.7</td>
<td>116.06</td>
<td>12260</td>
</tr>
<tr>
<td>5.7 ≤ log(AreaV) < 6.8</td>
<td>501.23</td>
<td>1199</td>
</tr>
<tr>
<td>log(AreaV) >= 6.8</td>
<td>2052.2</td>
<td>541</td>
</tr>
</tbody>
</table>

- from a manual (non reproducible at the moment!) maximum likelihood maximization

→ frequency with strong disproportions makes problems (estimation problems)
Clustering illustration

- by Voronoï on centroïd’s building
- buildings’areas reveal zone

Figure: Voronoï : 5 clusters
Spatial distribution of clusters

- not uniformly distributed

Figure: small size cluster location
Figure: small building’s influence
Figure: City structuration
Conclusions

- this is not reproducible research
- but improvable research

→ because
 - of the lack (in France of course!) of reliable "official" data bases (how to improve them?)
 - of the difficulty to interact between GIS and statistical tools (thanks to our colleagues this bug is fixed)
 - we have to work hard on suitable models and corresponding estimators
- thanks to QGIS, R, knitr, \LaTeX{} (and other open... things)