Weather events identification in social media streams: tools to detect their evidence in Twitter

Alfonso Crisci (1)

Valentina Grasso (1,2), Imad Zaza (3), Federica Zabini (1,2), Paolo Nesi (3) and Gianni Pantaleo (3)

(1) CNR Ibimet, Italian National Research Council, Florence, Italy (v.grasso@ibimet.cnr.it)
(2) LaMMA Consortium, Italian National Research Council, Florence, Italy.
(3) DISIT Lab, Distributed [Systems and internet | Data Intelligence and] Technologies Lab, Dep. of Information Engineering (DINFO), University of Florence, Italy

Where the River Rises: A River of Words.

Source: Going Deeper or Flatter: Connecting Deep Mapping, Flat Ontologies and the Democratizing of Knowledge

Humanities 2015, 4(4), 623-636; doi:10.3390/h4040623
http://selinaspringett.com/wp/?p=166
Social media data become a powerful real time informative source to monitor the impacts of meteoclimatic events.

The reliability of social media activity and content on weather related natural risk is a current topic.

Weather events are bounded in time and space and could have a deep impact on civil society.

Performing real-time events detection from social media sources requires tools and a cross-disciplinary framework.

Methods to detect and track natural hazards by using public informative continue to increase in coverage, resolution and reliability.
Aims of work

- Report a 4 year experience on analysis of Twitter social media (SM) streams related to weather.
- Share background needed for an effective information extraction from public SM flows paying attention to a fast and real detection of impacting weather events in order to increase situational awareness.
- Showing some empirical evidences to help implement a real open toolchain leading to a visual dashboard for regional/national weather services.
Social Media Public Sources: crowd-sensing by using Twitter data

On-line multilanguage platform for social-networking and microblogging. Twitter data perform significant crowd-sensing.

6.4 million of active users in Italy (2015)

Who feed information in 🏛️?
Many and various

Citizen, Institution, Institutional Public Services, Business Companies, Community - NGO organization, Media, Conversational Bots and Sensors Bots.

Metrics of activity

- RTW_TW: N° of tweets & retweets
- RTW: N° of tweets & retweets
- TW: N of native tweets & retweets
- U_native_users: N° of native TW authors
- U_full_user: N° authors of TW & RTW
- U_unique_hashtag: N° of hash-TAG

Open Source tools

https://github.com/alfcrisci/rTwChannel
Twitter Vigilance platform is an environment developed by DISIT University of Florence that:

- Manage multiple queries in twitter API
- Store the data of messages collected by user defined queries -> channel
- It is a dashboard able to visualize data collecting process & analytics of twitter metrics of channel

Social media data: Channel “CALDO”

EVENT DETECTION in social media: fishing words/tags in a FLOOD of dropped messages
EVENT DETECTION in social media: words/tags creates “word drainage” channels

Different queries correspond to different data extraction volumes. Each one can be summarized as daily statistics by using key activity metric and obtaining different representable flows in function of the querying parameters (terms, hashtags (#) or users (@)).
DATA EXTRACTION: Twitter corpora have the highest lexical diversity

<table>
<thead>
<tr>
<th></th>
<th>WIKIPEDIA</th>
<th>TWITTER</th>
<th>BOOKS</th>
<th>WEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE (ratios)</td>
<td>1 X</td>
<td>~1.2 X</td>
<td>~100 X</td>
<td>~200 X</td>
</tr>
<tr>
<td>LEXICAL DIVERSITY</td>
<td>483 k</td>
<td>736 k</td>
<td>135 k</td>
<td>206 k</td>
</tr>
<tr>
<td>CURATION</td>
<td>Very High, Peer Reviewed, Updated Frequently</td>
<td>None, High rate of typos and non standard language</td>
<td>Professionally edited</td>
<td>Mix</td>
</tr>
<tr>
<td>REGISTER</td>
<td>Very Formal, Reporting Fashion</td>
<td>Very Informal, Colloquial</td>
<td>Formal, Narrative style</td>
<td>Mix</td>
</tr>
<tr>
<td>OBJECTIVITY</td>
<td>Completely Factual</td>
<td>More Opinions</td>
<td>More Fictional</td>
<td>More factual</td>
</tr>
</tbody>
</table>

Twitter shows many OOV out-of-vocabulary terms that change in function of the events.

Considering specific features of Twitter textual data it is ever hard to mine conversations.

Modeling Word Meaning: Distributional Semantics and the Corpus Quality-Quantity Trade-Off
S Sridharan, B Murphy
Proceedings of the 24th International Conference on Computational Linguistics
DATA EXTRACTION : Terms of channel have different extractive capabilities

More “crowd” corpora

Italian Corpus repubblica.it

More “oriented community based”

Weather services TW Channel

Weather People communities TW Channel

Semantic capabilities (N of connection) of words are different and their power of extraction in the Twitter streams differs in function to Users sets. In popular streams wide sense words seem also high frequency words and are able extract more messages.

Babelnet.org metrics are used for meteorology category.
Semantic network of word sense: word “PIOGGIA” from Babelnet.org
EVENT IDENTIFICATION: Social media and real-world event condition for linking

- **Document stream**: a time ordered sequences of featured documents D_{ev}

- **Trending time**: a trending time period for a feature over a document stream is time period where document frequency of the features in document stream is substantially higher than expected.

- **Trending event**: is a real-world occurrence with an (1) associated time (T_{ev}), (2) a stream document (D_{ev}) about the occurrence and published during T_{ev} and (3) one or more features that describes the occurrence and for which T_{ev} is trending time period over document stream (D_{ev}).
EVENT DETECTION in social media: what is a Twitter channel?

- Channel is a conversation stream obtained by a recursive API query of tweets (Twitter API 1.1)
- Channel produces a dataset with a time dimension.
- Channel has a set of contributors (original unique authors or amplifiers by re-tweet mechanism).
- Channel is a virtual conversational space among different communities.
- Channel is a textual corpus with specific linguistic and semantic properties.
- Channel has proper activity dynamics and behaviours regarding social media mechanisms (retweeting, mentioning, tagging, media and linking content)
- Channel could be representative of a specific web-community or not.
- Semantic oriented channels could represent a set of topic specific informations.
As a flood needs rain, in social media real-impact events needs documents.

Quantitative relation relies on some factors:

- Population density of the area impacted
- Level of awareness of people involved
- Digital literacy of impacted population
- Institutional preparedness to weather related risks
EVENT DETECTION: 12-08-2015 Twitter channels for Rossano (Calabria) flood event

Image source:
http://www.caritasitaliana.it/pls/caritasitaliana/
EVENT DETECTION: 01-10-2015 Twitter channels for Olbia (Sardinia) flood event

Image source:
http://www.ilpost.it/2013/11/19/foto-alluvione-sardegna/alluvione-sardegna-14/
EVENT DETECTION: 01-08-2015 twitter channels for Firenze Toscana burst event

Image Sources:
http://aldopiombino.blogspot.it/2015/08/il-downburst-del-temporale-di-firenze.html
Channel “Caldo” and Heatwave periods 2015 (15 May to 15 September)
Framing conjectures for detection of weather events

- For weather events that have a slow impact “trending periods” of SM activity work well.
- For the detection of fast and sudden events the synchronization of trending periods could be exploited by using search terms with different semantic extents.
- During synchronization time document frequency reach its relative maximum creating a well recognizable pattern and event is clearly detected (half onion effect).
- Geographical terms show their importance because are good proxy of event’s situational awareness.
- During severe events trending topics generally contain the name of the places involved.
Public & accessible social media data could be considered as a real huge informative data stream concerning severe weather events or other climatic threats.

Social media (SM) data acquisition, storage and filtering to obtain reliable data collections requires huge work and dedicated tools. It is a real challenge for open source developers.

Finding appropriate query-terms to obtain suitable data. The semantic tuning of TW channels is ever required. Platforms as TwitterVigilance are suitable example.

Weather events are different in space, time and atmospheric processes involved. Events detection requires a specific search strategy. Appropriate use of semantic features of words point to interesting directions.
Contacts

Communication analyst

Valentina Grasso
grasso@lamma.rete.toscana.it
v.grasso@ibimet.cnr.it

Federica Zabini
zabini@lammarete.toscana.it
http://www.lamma.rete.toscana.it
http://www.ibimet.cnr.it/

Biometeorology

Alfonso Crisci
a.crisci@ibimet.cnr.it
alfcrisci@gmail.com
@alf_crisci

Informatics Science

Imad Zaza
Imad_zaza@unifi.it

Paolo Nesi
paolo.nesi@unifi.it

Gianni Pantaleo
gianni.pantaleo@unifi.it

http://www.disit.org/
http://www.disit.org/tv/

Data & Code:
https://github.com/alfcrisci/ogrs_2016_weathersocial_paper
This study was carried out in the field of the CARISMAND Project:
Culture And RISkmanagement in Man-made And Natural Disasters

http://www.carismand.eu/