Hotspot analysis: a first prototype Python plugin enabling exploratory spatial data analysis into QGIS

Daniele Oxoli1, Mayra A. Zurbarán2, Stanly Shaji3, Arun K. Muthusamy3

1Dept. of Civil and Environmental Engineering, Politecnico di Milano, Como Campus, Italy
2Dept. of Systems Engineering, Universidad del Norte, Barranquilla, Colombia
3Politecnico di Milano, Dept. of Electronics, Information and Bioengineering, Milano, Italy
Introduction and Motivations

✓ Free and Open Source Software for Geospatial (FOSS4G) is becoming extremely popular among a larger community of both users and developers.

✓ In addition to the licensing advantages, this is surely due to the possibility of building and customizing geospatial applications to meet practical requirements of any users.

✓ Nowadays, QGIS is recognized as one of the most flexible as well as fashionable FOSS GIS environment.

✓ However, from the user’s perspective, proprietary GIS software is still representing the most suitable solution to perform advanced or particular kinds of spatial data analysis, such as Exploratory Spatial Data Analysis (ESDA).

✓ This work represents a step toward the inclusion of ESDA tools into QGIS, by exploiting available Python libraries dedicated to spatial statistics and analysis (i.e. PySAL), with the aim of improving QGIS mapping capabilities as well as providing powerful analysis tools to users with no advanced programming skills - through a user-friendly QGIS Python plugin.
ESDA at a glance

- *Exploratory Spatial Data Analysis (ESDA) identifies a collection of techniques to describe and visualize spatial distributions, highlight atypical locations or outliers, discover patterns and suggest different spatial regimes and other forms of spatial instability* (Anselin, 1999)

- Central to ESDA is the **spatial autocorrelation** and **spatial heterogeneity** in which locational similarity (i.e. observations in spatial proximity) is matched by attribute correlation. Therefore, ESDA requires that **numerical and graphical procedures be linked with a map**

- ESDA relies on various software implementations: proprietary software toolboxes (ArcGIS), stand-alone FOSS platforms (e.g. GeoDa, ESTAT) and programming libraries (e.g PySAL). Formal and complete inclusion of ESDA capabilities into FOSS GIS platforms is not still available
Hotspot analysis with ESDA tools

- One of the possible analysis enabled by ESDA tools is the Hotspot analysis. This is based on LISA statistics (Local Indicators of Spatial Association) which evaluate the existence of clusters in the spatial arrangement of a given variable \(x \). Hotspot analysis aims to detect significant data clusters by means of \textbf{Getis-Ord Gi*} statistic.

- Clusters result from concentrations of weighted points (i.e., locations representing all the events within their influence area or locations with a characteristic magnitude associated). Each cluster is formed by the \(j \) weighted points within a distance \(d \) from the original weighted point \(i \) (\textit{with i included}).

- \(\text{Gi*} \) is computed comparing local averages to global averages, using spatial weights \(w_{ij}(d) \).

- \(Z \)-scores of the \(\text{Gi*} \) local statistic as well as \(p \)-values of the null-hypothesis (complete spatial randomness) are computed for any point of the dataset in order to distinguish between Hotspots and Coldspots. Reference values for \(Z \)-score and \(p \)-values are associated with the standard normal distribution.

\[
\text{Gi*}_i = \frac{\sum_{j=1}^{n} w_{i,j} x_j - \bar{X} \sum_{j=1}^{n} w_{i,j}}{\sqrt{\left[n \sum_{j=1}^{n} w_{i,j}^2 - \left(\sum_{j=1}^{n} w_{i,j} \right)^2 \right] / (n-1)}}
\]

\[
\bar{X} = \frac{\sum_{j=1}^{n} x_j}{n}
\]

\[
S = \sqrt{\frac{\sum_{j=1}^{n} x_j^2}{n} - (\bar{X})^2}
\]

\[
Z(\text{Gi*}) = \frac{\text{Gi*}_i - \mu_{\text{Gi*}}}{\sigma_{\text{Gi*}}}
\]
Hotspot analysis in the practice

✓ **Epidemiology**

✓ **Criminology**

✓ **Ecology**

✓ **Transportation Management**

✓ **User Generated Content Analysis**
 [e.g: Brovelli, M. A., Oxoli, D., & Zurbarán, M. A. (2016). Sensing Slow Mobility and Interesting Locations for Lombardy Region (Italy): a Case Study Using Pointwise Geolocated Open Data. *ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, 603-607.]

✓ ...

POLITECNICO MILANO 1863
Hotspot analysis plugin: Development

✓ **GUI**
 - PyQt (https://wiki.python.org/moin/PyQt)

✓ **Processing Functionalities**
 - QGIS Python core library
 PyQGIS (http://pyqgis.org)
 - Dependencies (to be installed)
 PySAL (http://pysal.github.io)
 + SciPy (https://www.scipy.org)
 + NumPy (http://www.numpy.org)
 Pyshp (https://pypi.python.org/pypi/pyshp)

✓ **Code Repository and Documentation**
 - https://github.com/stanly3690/HotSpotAnalysis_Plugin
Hotspot analysis plugin: Functioning

✓ **Input data**

 A point shapefile with at least these three fields in the attribute table:

 • X, Y (projected coordinates)
 • A positive numeric attribute

✓ **Input parameters**

• An user-selected distance (threshold) - OR

• An user-selected distance interval (Min-Max Distance) and a distance step (Dist Step) → activating the Optimize Threshold option, the plugin will search the distance -in the specified range- which maximize the **global Moran’s I** index for the input dataset. This distance will be used for Hotspot analysis

✓ **Output**

A copy of the input shapefile with two new fields in the attribute table containing Gi* Z-scores and p-values, computed for each point of the dataset (an example of Hotspots classification is available as Style Layer Definition (SLD) inside the GitHub: https://github.com/stanly3690/HotSpotAnalysis_Plugin/tree/master/test_data)
Plugin application examples

1) Sensing attractive location for slow-mobility activities using user generated content

Detection of atypical concentration of user generated GPS waypoints within the Lombardy region (Italy) to identify the most visited locations

Sparse GPS waypoints. (Data source: Wikiloc - Data type: GPX tracks related to outdoor activities e.g. hiking, biking, running, etc.)

Distinction between GPS waypoints registered during weekend and weekdays

Concentration maps for clusters identification

The clusters are depicted... but which ones are statistically significant??
Plugin application examples

1) Sensing attractive location for slow-mobility activities using user generated content

Detection of atypical concentration of user generated GPS waypoints within the Lombardy region (Italy) to identify the most visited locations.

Sparse GPS waypoints aggregation into weighted points. The count of waypoints within any municipality is assigned as attribute to the municipality centroids.
2) Most dangerous place to drive in England: detection of significant car accident hotspots

Car accident records
Plugin application examples

2) Most dangerous place to drive in England: detection of significant car accident hotspots

Concentration Map. The clusters are depicted... but which ones are statistically significant??
Plugin application examples

2) Most dangerous place to drive in England: detection of significant car accident hotspots

Events aggregation into weighted points (by counting sparse points falling inside a 10 Km grid cells and assigning this count to the cell’s centre)

Concentration Map. The clusters are depicted... but which ones are statistically significant??
2) Most dangerous place to drive in England: detection of significant car accident hotspots

Events aggregation into weighted points (by counting sparse points falling inside a 10 Km grid cells and assigning this count to the cell’s centre)

Concentration Map. The clusters are depicted... but which ones are statistically significant??

Plugin further improvements

- Enable **automatic events aggregation** through:
 - Count points on a grid (or multi-polygon shapefile)
 - Snap points into representative locations (Density-Based Clustering)
Plugin further improvements

 ✓ **Dependencies reduction** by substituting some of the external libraries with available PyQGIS APIs and QGIS core Python Libraries

 ![Hotspot Analysis dialog box](image)

 Coming soon!!

 - From Pyshp to GDAL/OGR
 - X,Y coordinates as attribute fields no more needed

 ✓ **Inclusion of other ESDA tools** from the PySAL core library (e.g. Local Moran’s I etc.)

 ✓ Automatic **styling** of the output layers
Conclusions

- **Results** from the Hotspot analysis reflect **subjective** choices of the analyst, which is asked to interact with data in order to draft conclusions… "**all maps are wrong but some are useful**" – J. Keith Ord 2010

- Potential **applications** of the Hotspot analysis - or more in general of the ESDA- are broad and helpful **for manifold scientific fields**

- The inclusion of **PySAL into QGIS** represents a meaningful objective in order to strengthen the capabilities of this FOSS GIS and to boost its usage among a wider and heterogeneous user community
Hotspot analysis QGIS plugin

• https://github.com/stanly3690/HotSpotAnalysis_Plugin

...Questions?

Picture by Rossella Fidanza @altervista.org